Biochemistry of muscle

Muscle diseases.

tissue.

Muscle types

Smooth muscle Myocardial muscle Skeletal muscle

➢ slow

➤ no drawning

- internal organs
- ➤ involuntary
- ➤ no exhaustible
- ➢ extracellular Ca²⁺
- ➤ single cells

➤ striated

Fast

skeletal muscle

- ➢ is worked by knowledge
- ➤ exhaustible
- ➢ intracellular Ca²⁺
- > syncytium

Metabolism of the skeletal muscle

1.Slow oxidative muscles – red muscles

- constantly engaged muscles with low-intensity work (anti-gravity muscles)
- to be tired slowly
- high content of mioglobin and mitochondria
- so much capillaries
- not contain glycogen
- cover their energy by oxidation of <u>fatty acids</u> and <u>ketone bodies</u>.

2. Fast glycolytic muscles – white muscles

- muscles with short periods of intense effort
- to be tired soon
- few content of mioglobin and mitochondria
- advanced sarcotubulated membrane system
- cover their energy by glycogen degradation

3. Fast oxidative and glycolytic muscles

- rapid rate of contraction
- fatigue tolerances better than the white muscles becauses of the mixed metabolism

The thick filaments - myosin structure

Myosin structure:

- Heavy chain: 230 kD
 - \checkmark 2 chain in the helical arrangement
 - ✓ forms the tail part wich is150 mm long and diameter is 2nm tail

Light chain: 20 kD

- \checkmark 4 light chains form the globular head part (4x11 nm)
- ✓ contains the ATP-degrading active site location

Features of the thick filaments:

> myosin polymers - myosin molecules are held together by electrostatic interactions

> through the "hinge" region the myosin is capable of displacement in the direction of the tail portion

- the head parts form 6 lanes at the 2 end of the thick filament
- > the myosin heads are repeated within 58 nm in a band

The thin filament – actin

- one of the most widespread protein
- G-aktin (globular): 42 kD, monomer
- F-aktin (fibrillar): polimer
- ➤ <u>Types</u>:
 - \checkmark α -actin: contractile system of the myocardial-, skeletal- and smooth muscles
 - \checkmark β-, γ-actin: system can be found in every cell's cytoskelet

Tropomyosin (70 kD):

cover the region with the cross bridge on actin's surface

Troponin complex:

- troponin T (37 kD): connects to the tropomyosin
- troponin C (18 kD): contains the Ca-binding domain
- troponin I (24 kD): inhibitory subunit, interacts with the cross bindings

The mechanism of the muscle contraction

Regulation of the skeletal muscle's contractionrelexation

Structure of the skeletal muscle

Connection between the length and stretch of the skeletal

muscle

Stretch and effort capacity of skeletal muscle :

- depends on the sarcomer's length
- > can be reach the maximum in case of 2,0 2,5 μ m sarkomerlength
- > if the sarkomerlength is > 3,5 μ m v < 1,2 μ m, muscle is not capable to do active tension

The effort of the muscle and the capable to do active tension is proportional with the cross-bridges

the maximum shortening capacity of the muscle is the third part of resting length
the maximum effort is proportional with functional cross-section

The structure of the sarcotubulated system

The excitation-contraction coupling

The regulator of the muscle contraction and relaxation is the change in concentration of the cytoplasmic free Ca^{2+.}

In skeletal muscle:

> <u>Dihidropiridin-receptor</u> (DHPR)= L-type Ca^{2+} -chanel The change in conformation is enough the opening of rianodinreceptors (Ryr).

In cardial muscle:

There is no directly mechanical relationship between DHPR and Ryr

≻Ca²⁺-indicated Ca²⁺-release

➤The cells of myocardial muscles can not be activated in the absence of extracellular Ca²⁺

In smooth muscle:

slowly process

➤Accessing of intracellular Ca²⁺ 's storage can be occured by <u>inositol-triphosphate</u> release and intracellular diffusion

The mechanism of Ca²⁺ reuptake

The relexation can be occured by the increase of the ionisated Ca²⁺-concentration in the sarcoplasmatic place.

> <u>SERCA</u> (SR Ca²⁺-ATPas): with the application of 1 ATP, 2 Ca²⁺could be pumped to the lumen of sarcoplasmtaic reticulum

Ca²⁺-binding proteins in the lumen of SR: calsequestrin, calreticulin

> in cardial muscle: the dephosphorilated phospholamban connect to the SERCA, and decrease it's activity. Due to the effect of β -adrenerg stimulation the phospholamban will be phosphorilated and get isolated from the SERCA, so it's effort will be increased

Tired muscle, muscle strain

<u>Tired muscle</u>: the force and/or speed of the muscle contraction is decreased.

Levels:

- excitation-contraction connection
- ➤ contractile system
- metabolic energy support
- ➤ Ca²⁺-reuptace

In the tired muscle can be observed:

- the depletion of glycogen stores
- Iocally H + -, lactic acid and phosphate concentration increased, acidosis
- ≻ K+-efflux
- > water flow due to hyper-osmotic induced degradation products

Muscle strain:

rough morphological damages, distortion of membrane elements and filaments, disintegration

primarily observed during eccentric muscle work

Ion chanel diseases

1. Malignant hyperthermia

- <u>cause</u>: point mutation of <u>ryanodin receptor</u>
- by using of inhaled anesthetics
- the muscle will be full with Ca²
- symptoms: hypercontraction, acceleration of metabolic process, increasing of temperature
- life-threatening!

2. States with miotonia

- defect of Cl⁻ or Na⁺-chanels (such as: prolonged paralysis with hiper-, hypokalaemia)
- symptoms: prolonged muscle relaxation
- 3. <u>Muscular disgenezis</u>: lack of dihidropiridin-receptor

Cytoskeletal structure of the muscle I.

<u>Z-stripe</u>:

- > basic structure: α -aktinin (100 kD)
- here become fixed the F-aktin and the connected nebulin
- ≻ <u>titin</u>:
 - ✓ the most highest molecular weight protein (2,5 MD)

✓ it is located between Z-stripe and thin filaments

 \checkmark <u>functions</u>: restitution of the original position of the thin and thick filaments after the overstreching, limitation of the streching

Intermedier filaments:

- desmin: specific for myocardial and sceletal muscles
- vimentin: in smooth muscle
- ➤ role:
 - ✓ control of muscle morphogenesis
 - ✓ structural settlement of the sarcomers, filaments, fibrillums

Cytoskeletal structure of the muscle II.

Cytoskeletal structure of the membran:

≻ <u>role</u>:

- ✓ regulater of the diffusion of integral membranproteins, receptors, chanels
- ✓ connenction with the internal cytoskeleton and extracellular matrix components

<u>distrofin</u>: creates a connenction between cytoskeletal actin system and membran-built glycoproteincomplex

<u>utrofin</u>: placement of theT-tubulus SR juncion and myoneural juncion

Duchenne-disease:

- ➤X-linked inheritance
- > Defect of the <u>dystrophin gene</u>
- repeated fiber necrosis
- Unable to walk at the age of 6-8

Becker-muscle dystrophy

- ➤ milder form
- shorter, but even to some extent functional dystrophin synthesis
- >early death due to respiratory muscle and heart muscle damage

ATP synthesis in the muscle

adenylate-kinase Fatty acid-oxidation creatin-phosphate glycogen breakdown

creatin-phosphate